Development and evolution of the unique cetacean dentition

نویسندگان

  • Brooke A. Armfield
  • Zhengui Zheng
  • Sunil Bajpai
  • Christopher J. Vinyard
  • JGM Thewissen
چکیده

The evolutionary success of mammals is rooted in their high metabolic rate. A high metabolic rate is sustainable thanks to efficient food processing and that in turn is facilitated by precise occlusion of the teeth and the acquisition of rhythmic mastication. These major evolutionary innovations characterize most members of the Class Mammalia. Cetaceans are one of the few groups of mammals in which precise occlusion has been secondarily lost. Most toothed whales have an increased number of simple crowned teeth that are similar along the tooth row. Evolution toward these specializations began immediately after the time cetaceans transitioned from terrestrial-to-marine environments. The fossil record documents the critical aspects of occlusal evolution of cetaceans, and allows us to pinpoint the evolutionary timing of the macroevolutionary events leading to their unusual dental morphology among mammals. The developmental controls of tooth differentiation and tooth number have been studied in a few mammalian clades, but nothing is known about how these controls differ between cetaceans and mammals that retain functional occlusion. Here we show that pigs, a cetacean relative with regionalized tooth morphology and complex tooth crowns, retain the typical mammalian gene expression patterns that control early tooth differentiation, expressing Bmp4 in the rostral (mesial, anterior) domain of the jaw, and Fgf8 caudally (distal, posterior). By contrast, dolphins have lost these regional differences in dental morphology and the Bmp4 domain is extended into the caudal region of the developing jaw. We hypothesize that the functional constraints underlying mammalian occlusion have been released in cetaceans, facilitating changes in the genetic control of early dental development. Such major developmental changes drive morphological evolution and are correlated with major shifts in diet and food processing during cetacean evolution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cetacean Brain Evolution: Multiplication Generates Complexity

Over the past 55-60 million years cetacean (dolphin, whale, and porpoise) brains have become hyperexpanded so that modern cetacean encephalization levels are second only to modern humans. At the same time, brain expansion proceeded along very different lines than in other large-brained mammals so that substantial differences between modern cetacean brains and other mammalian brains exist at eve...

متن کامل

Multiple Dental Anomalies in Primary and Permanent Dentition: A Case Report

Dental anomalies are rare findings that may affect development of occlusion and early intervention may be required. Here, a case of multiple anomalies in primary and perma‌nent dentitions is reported. The patient referred to the dental center with the chief complaint of multiple tooth decay. In the oral examination, the rare case of triplica‌tion between the right geminated man-dibular A and...

متن کامل

How to Make a Dolphin: Molecular Signature of Positive Selection in Cetacean Genome

Cetaceans are unique in being the only mammals completely adapted to an aquatic environment. This adaptation has required complex changes and sometimes a complete restructuring of physiology, behavior and morphology. Identifying genes that have been subjected to selection pressure during cetacean evolution would greatly enhance our knowledge of the ways in which genetic variation in this mammal...

متن کامل

Tectonosedimentary evolution of the basins in Central Alborz, Iran

Evidence of at least ten different tectonic- controlled sedimentary basins can be recognized in the central part of the Alborz Mountains in the Middle part of the Alpine-Himalayan belt. They formed from Neoprotrozoic to recent time as the results of the relative plate motion in southwest of Asia in Tethyan realm. The basins include: (1) Prototethys Late Neo-Proterozoic to Early Ordovician epi-c...

متن کامل

Reconstructing cetacean brain evolution using computed tomography.

Until recently, there have been relatively few studies of brain mass and morphology in fossil cetaceans (dolphins, whales, and porpoises) because of difficulty accessing the matrix that fills the endocranial cavity of fossil cetacean skulls. As a result, our knowledge about cetacean brain evolution has been quite limited. By applying the noninvasive technique of computed tomography (CT) to visu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2013